Effects of eicosapentaenoic acid on cardiac SR Ca(2+)-release and ryanodine receptor function.

نویسندگان

  • J S Swan
  • K Dibb
  • N Negretti
  • S C O'Neill
  • R Sitsapesan
چکیده

n-3 polyunsaturated fatty acids (PUFAs) can prevent life-threatening arrhythmias but the mechanisms responsible have not been established. There is strong evidence that part of the antiarrhythmic action of PUFAs is mediated through inhibition of the Ca(2+)-release mechanism of the sarcoplasmic reticulum (SR). It has also been shown that PUFAs activate protein kinase A (PKA) and produce effects in the cardiac cell similar to beta-adrenergic stimulation. We have investigated whether the inhibitory effect of PUFAs on the Ca(2+)-release mechanism is caused by direct inhibition of the SR Ca(2+)-release channel/ryanodine receptor (RyR) or requires activation of PKA. Experiments in intact cells under voltage-clamp show that the n-3 PUFA eicosapentaenoic acid (EPA) is able to reduce the frequency of spontaneous waves of Ca(2+)-release while increasing SR Ca(2+) content even when PKA activity is inhibited with H-89. This suggests that the EPA-induced inhibition of SR Ca(2+)-release is not dependent on activation of PKA. Consistent with this, single-channel studies demonstrate that EPA (10-100 microM), but not saturated fatty acids, reduce the open probability (Po) of the cardiac RyR incorporated into phospholipid bilayers. EPA also inhibited the binding of [3H]ryanodine to isolated heavy SR. Our results indicate that direct inhibition of RyR channel gating by PUFAs play an important role in the overall antiarrhythmic properties of these compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative analysis of calcium signalling in cardiac muscle.

This review discusses the control of the amplitude of the cardiac systolic Ca transient. The Ca transient arises largely from release from the sarcoplasmic reticulum (SR). Release is triggered by calcium-induced calcium release (CICR) whereby the entry of a small amount of Ca on the L-type Ca current, "the trigger", results in the release of much more Ca from the SR. There are three potential c...

متن کامل

Sarcoplasmic reticulum Ca2+ transport and gene expression in congestive heart failure are modified by imidapril treatment.

This study was designed to test the hypothesis that blockade of the renin-angiotensin system improves cardiac function in congestive heart failure by preventing changes in gene expression of sarcoplasmic reticulum (SR) proteins. We employed rats with myocardial infarction (MI) to examine effects of an angiotensin-converting enzyme inhibitor, imidapril, on SR Ca(2+) transport, protein content, a...

متن کامل

The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle

The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbu...

متن کامل

Dantrolene prevents arrhythmogenic Ca release in heart failure

Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca release in heart failure. Am J Physiol Heart Circ Physiol 302: H953–H963, 2012. First published December 16, 2011; doi:10.1152/ajpheart.00936.2011.—In heart failure (HF), arrhythmogenic Ca release and chronic Ca depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR C...

متن کامل

Phosphorylation of the cardiac ryanodine receptor by Ca2+/calmodulin-dependent protein kinase II: the dominating twin of protein kinase A?

Excitation–contraction coupling in the heart relies on Ca -induced Ca release from the sarcoplasmic reticulum (SR). Ca influx via L-type Ca channels during an action potential triggers Ca release from the SR via Ca release channels, or ryanodine receptors (RyR2). Fine tuning of RyR2-mediated SR Ca release is central to cardiac function. When RyR2-mediated Ca release increases, the resulting aug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2003